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Abstract—The problem of deducing two-dimensional theories from the three-dimensional theory
for a transversely isotropic body is investigated. It is shown that the spatial displacements of a three-
dimensional body can be represented by the mid-plane displacements and their derivatives and that
the general deformation can be decomposed to two independent parts : the asymmetric deformation
(plate problems) and the symmetric part (plane problems). The exact equations for the homogeneous
transversely isotropic plates and the approximate equations for the transversely isotropic plates
under transverse loads are derived directly from the three-dimensional theory. Torsion of a rec-
tangular plate and bending of an infinitely large plate with a circular hole are examined to illustrate
the application of the plate theory developed.

1. INTRODUCTION

Since the publication of the excellent work of Cheng (1977, 1979) on deducing the (static)
plate theory directly from the three-dimensional theory of elasticity, several extensions have
been found in the static problems of both isotropic plates (Barrett and Ellis, 1988) and
transversely isotropic plates (Wang, 1985), as well as in the dynamic problems of isotropic
plates (Wang, 1988a) and micropolar plates (Wang, 1988b). The significance of Cheng’s
method is that it opens a systematic way of developing approximate two-dimensional
theories from the fundamental three-dimensional theory for many physical problems.

In his paper (1979), Cheng has shown how a refined theory for the bending of isotropic
plates can be deduced from the three-dimensional theory of elasticity without any ad hoc
assumptions. People may doubt the legitimacy of manipulations performed on differential
operators in the derivation; however, the final results obtained by his method can be
justified by the satisfaction of all equations in the three-dimensional theory. The only
approximation in Cheng’s plate theory is due to the approximate specification of boundary
conditions at the edges of plates; therefore, regarding Saint-Venant’s principle, Cheng’s
theory is a very accurate one.

A parallel development of Cheng’s plate theory has been obtained by Wang (1985) for
transversely isotropic plates. Instead of using a redundant general solution to the three-
dimensional theory of elasticity, as in Cheng (1979), Wang has used Hu’s general solution
to the three-dimensional elasticity for a transversely isotropic body in his derivation. The
refined theory for the transversely isotropic plates obtained there has the identical structure
as that of Cheng’s theory for the isotropic plates, i.e. a biharmonic equation, a shear
equation, and a transcendental equation. The result also indicates that the effect of the
transversely isotropic material property is reflected only in the coefficients assoctated with
the higher order terms of the plate thickness in the biharmonic equation and in the shear
equation. It should be noted that the three-dimensional displacements there have not been
expressed purely by the mid-plane displacements and their derivatives ; instead, an auxiliary
function was used. Recently, Wang (1988a,b) has generalized his result to obtain the
approximate two-dimensional theories for the dynamical problems of isotropic plates and
micropolar plates.

Another new development of Cheng’s theory is given in a recent paper by Barrett and
Ellis (1988) for the isotropic plates under a transverse load (only homogeneous cases are
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considered in the previous works). Their work actually indicates that various approximate
theories for plates subject to surface loads can be developed directly from the three-
dimensional theory of elasticity. The paper also presents a detailed discussion on the
specification of boundary conditions in light of the work of Gregory and Wan (1984, 1985).
Moreover, the relationship between Cheng’s theory and other well-known approximate
plate theories, such as those of Kirchhoff, Mindlin, Reissner, and Hencky, is well addressed.

This paper extends the work of Wang (1985) and Barrett and Ellis (1988) for the
transversely isotropic plates. Firstly, we express the total displacements in terms of mid-
plane displacements and their derivatives for the general deformation, a result which has
not been achieved by Wang (1985). Secondly, we show that the general deformation of a
three-dimensional body can be decomposed to two independent parts: the asymmetric
deformation (plate problems) and the symmetric deformation (plane problems). The plane
problems will be discussed in a companion paper (Wang, 1989a). Thirdly, we present the
exact equations for the homogeneous plates and the approximate equations for the plates
under transverse loads. Finally, two examples, torsion of a rectangular plate and bending
of an infinitely large plate with a circular hole, are examined to illustrate the application of
our bending theory of transversely isotropic plates.

2. BASIC EQUATIONS FOR TRANSVERSELY ISOTROPIC BODY AND
HU’S GENERAL SOLUTION

Let us consider a linear and transversely isotropic elastic body occupied the domain
Qx {—h/2 < z< h/2} in a Cartesian coordinate system (x, y,z), with Q as an arbitrary
region on (x, y) plane. The basic equations for the transversely isotropic body in the three-
dimensional linear elasticity are described to be (Lekhniskii, 1981),

Constitutive equations :

Oxx A A An]/0U
o, =142 A4, A ayV (1
0. 13 A Asd\o. W

Ox = A44(ax W+ azU)’ axy = A44(ay W+ az V), ny = A66(ayU+ &vV)

where o,,, 0,,, 6.. are normal stresses, o.,, 0.,, 0., are shear stresses, and U, V, W
are displacements in the respective Cartesian directions. 4,; are material constants with
Ags = (A, —A4,3)/2. The relation between the material constants A4,; and the customary
engineering material constants is given in Appendix A. The differential operators are defined
as

0 0 0
ax( )=—I§X—)’ ay( )='_(;"’ az( )=’_;z_)'

Equilibrium equations in terms of displacements :

A0z + Ag60yy + A 440 (A12+Ag6)0yy (A)3+A44)0 U
(4124 Ag6)0s, Ag60xx+ A 110,y + A44a0;; (A13+A44)0,, V]=0.
(Al3+A44)azx (AI3+A44)azy Aldaxx+A44ayy+A336:: w.

2

Hu’s general solution : the general solution of the three-dimensional eqns (2) found by Hu
(1953) can be represented by
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U=0d,f+8.F, V=—0,f+3,F, W= —x2 F-pVF 3)

where V2 = 9,,+4,,, and the displacement functions f and F satisfy the following two
uncoupled equations
(s5Vi+0..)f =0
(stZ+6_,_.)(s§V2+6z:)F = 0. 4)
The coefficients «, §, s¢, 51, 52, and other coefficients used late are given in Appendix A.
For the isotropic elastic body, the completeness of the general solution (3) in the

regions which are convex in the z-direction (like the domain considerd here) has been
proven by Wang (1981).

3. FROM THREE-DIMENSIONAL EQUATIONS TO TWO-DIMENSIONAL EQUATIONS

The formal general solutions of eqn (4) can be found easily to be

f(x,)’,z) = SNoﬂ(xs}’)+CSoﬁ(x,}’)

2
F(xsy’ Z) = Z [SNiF:i(x’y) +CSiFai(x9 y)]

where f,, f,, F,, F,, i= 1,2, are arbitrary functions of x and y, with a subscript “a”
indicates that the corresponding function causes the asymmetric deformation about the
middle plane z = 0 and a subscript “s” indicates that the corresponding function causes the
symmetric deformation. The operators SN;, CS;, i = 0, 1,2, which must be interpreted as
representing series in powers of operators (s;V)?, are given in Appendix B.

The displacements follow from eqn (3)

2
U = 8,(SNofu+ CSof)+ ¥, 0,(CS.Fums?V3SN.E)
im1
2
V=—0,(SNof,+CSof)+ Y 0,(CS,Fy—siV*SN;Fy)
i=1
2
W =Y B.V*(SN,F;+CSF,) &)

where B, = as? — .
The mid-plane displacements and their derivatives can be found to be

2 2
u= Ul.—-o = ayfr+ Z aszl’ 0= az(]lz-o = ayfa" Z axsizszai
im ] =1
2 2
v= Vlz-o = _axf:r"' Z ayEu', ¢ = anlz-O = —Exf.;" Z aysizszal
=1 i=m1
2 2 )
w=W|..o= Z vaszais Y =0, Wi.o = z B:VVZEH (6)
i=] im]

To express the spatial displacements in terms of the mid-plane displacements and their
derivatives, we define

2 2
C= ZE\'I" n= Zsizszai (7)
iw im1

then
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& fi=60—v, Cfi=u=8L; O fo=—Cn—0, & f.=Cn+6; 8)
since G, ( ) = ¢,.( ), it follows that
Gutér—Vi{=0; 0+28,¢0+Vn=0. )
From eqns (6) and (7), the following relations can be found

2 . l 2¢72 2

1 ’e
m{)“(ﬁév's ~ ) (10)

ViF, = (—Bin+siw), ViF, = (Bin—siw). ()

_ _ L
B(st—s3) B(si—s3)

Substituting expressions (10) and (11) with the eqn (9) into (5), then after some
manipulation, we arrive at the representation of the displacements U, V, and W in terms
of the middle plane displacements «, v, w and rotations 8, ¢, ¢ as

U= SN09+ atLg(E‘G‘" 6,()5) +<3XL 1w CSQH -+ EXL,,(E,u-F 5‘,,1,’) - E"L w,'J/
V = SNod+0,Lo(2.0+0,0)+3,Loyw+CSot +&,Lu(@u+d,0) &, Loy
W= L,w+ Ly(0.0+0,0)+ Ly~ L, (0,u+0,1) (12)

where the differential operators L;; are

B

'_; Q?c

L=sissi-03+20),  L=scco-Cals

V2 1 1 2 2 3 i
Lw =1- ':I;'(G:Qcc"‘ﬁgcc)’ Lw =z-V Qs..\'" Q:s

X

v? 1 .
Llw = —;Q.én L28 = :;[a}’chc" (1-+ﬁ?)Q}c+aBQEc
l 1 ﬂ 2 2 2 1 L]
Ly =0 Ly= &;V forr Qs — (2 + BY)Qss + 2BQ ] (13)

The operators SS;, CC,, Q,, Q.. are given in Appendix B.

To verify the correctness of the above expressions, let’s consider a special case, i.e.
when the transversely isotropic body reduces to an isotropic body. In this case, it can be
shown that s, = 5, = 5, = | and the differential operators L;, Ly, L,, and L, in (13) have
the forms

1 sin Vz zsinVz
L~ za=ove (ZC%VZ- v ) Lu=—-za9w
L —cosVeg S350 VZ oo L vl
W COS z 4(1 -—V)V » Tw B+

Considering only the asymmetric deformation, we have f, =0, F; =0, i = 1,2, therefore,
= ¢ = i = 0 and the expression (12) reduces to the form
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(U) _sinVz (0) 1 (’ Vo sin V:) (6,e)
v)= v \o) T a0\ T T e

zsinVz

W= (COS VZ)W— me

where e = 8,0+ 0,¢—V?w. This expression is identical to the result obtained by Cheng
(1979) in a different way. Note that due to the fact that Hu’s general solution is proper,
in deriving the expression (12), we do not need to impose the function restriction used by
Cheng (1979) in his derivation.

The boundary conditions on the two surfaces z = —A/2 and h/2 are stress conditions,
that is

azz(x$y’ h/2) =P:(x,}’), a:z(xsya —h/z) =Pb(x,}’)

O'X_,_(X, Ys h/2) = q.ﬂ(x’ }’)’ sz(x, Vs = h/2) = ‘be(x, }’)

Uyz(xv Y, h/z) = qyt(x1 .V), Gyz(x, Y, —h/z) = qyb(x9 ,V) (14)
Note that by considering the different boundary conditions, we may have different types of
the plate or plane equations. However, we will not discuss this issue in the paper. From the
constitutive eqn (1), the relevant components of stress can be calculated to be:
A0, = (SNo+V2Lo+ b, Ly9)(0,0+8,8) + (VL1 +pd.L)w

+(CSo+ V2L, ~ud,Ly)(0u+0,0)—(V Ly, —ud, L))y (15)

444-4I Oxz = CS00+ (azLG +L20)ax(ax0+ ay¢) + (alew + Lw)axw
—S%VZSN()U‘F (azLu —LZu)ax(axu+ ayv) - (azL 1y —Llﬁ)axw (16)

A;4l0'y, = CSo¢ + (azLo + ng)ay(6,9+ ay¢) + (alew + Lw)ayw
—S(Z)VZSN()U + (azLu bnd Lz,,)ay(axu+ ayU) - (asz - Lw)ayl// (17)
Simple manipulation shows that the boundary conditions (14) lead to the following

two systems of uncoupled linear differential equations for the mid-plane displacements and
their derivatives (w, 8, ¢) and (u, v, ), respectively :

A0, A0, A ]/6 Ai'p,
CSo+A2,0,, Ayy0,, Ao |l @ Adlqa] z=h2 (18)
Auaxy CS0+A226”. A;gay W A;4lq_w

and
Z,0, Z..0, —X53 ) /u AT'p,
~53VESNo+X1,0,, Z,20,, —Z330: || v | ={A43lq) z=H2 (19)
zZZaxy _SgVZSNO'*'zZZayy —233ay 'I’ A;4lqy:
where

Ay, =SNo+V?Ly+ud,Lyg, Ay =V?Ly,+ud,L,, Az =0,Ly+ Lo,
A33 = a:Llw+Lw’ z= h/z (20)

t A general solution is proper if the total order of the differential equations in the general solution is same
as that of the original differential equation system.
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Zn = CSO+V2Lu_Aua:L2uv 213 = V:Llw—#a:Lw, Zzz = 6:Lu_L2u’

233 =6_.L|w"“Lw, :=h,‘2 (21)
and
_ Di—Ds _ qxr 'Hbe _ qv +qyb
a = 2 s xa = 2 ’ va = 2 (22)
= P +pb - Gt —Y9xp - q_vt _q)'b
ps - 2 s q.\'.v - 2 ’ qy: - 2 . (23)

Equations (18) and (19) indicate that the total deformation of the elastic body con-
sidered here can be decomposed into two independent parts : the asymmetric deformation
caused by the asymmetric surface loads (p,, 4.., ¢,,) ; and the symmetric deformation caused
by the symmetric surface loads (p,, ., 9,5). Such kinds of decomposition of deformation are
also observed in the vibration and stability analysis of the three-dimensional plates, Wang
and He (1985, 1986), Wang (1986), as well as in the vibration of the micropolar plates,
Wang (1989b). Clearly, eqn (18) is for the so-called plate problems, and the egn (19) is for
the so-called plane problems (for most of plane problems, p, = g,, = g,, = 0) in elasticity
(Timoshenko and Goodier, 1969). From now on, we will concentrate on the plate problem
by setting p, = g, = g,, = 0, therefore u = v = y = 0 can be assumed. The discussion of
the plane problem is given in the companion paper, Wang (1989a). However, it is interesting
to note at this point that the customary surface load condition (i.e. a plate is only subject
to the normal load p, at the top face z = 4/2) considered in the theory of plate will cause
the symmetric deformation of the plate since p, = p,/2 # 0 for this case.

Let D, be the determinant and D;; be the cofactors of the differential operator matrix
in (18). As discussed in Cheng (1979), the general solution of eqn (18) can be expressed as

3 3 3
0= Z D\, ¢= Z D,®, w= Z D, (24)
= i=1 i=1

®;’s satisfy the differential equations
D, =X, i=1273 (25)

in which X, = 473'p,y X3 = A7/ qeas X3 = A7) q,.. The determinant D, after some tedious
manipulation, is found to be

D, =V*CS,Gy, z=h/2 (26)
where
7Go = Gy, +2G 1+ V2Gy;. 27

G,; are given in Appendix B. For an isotropic elastic body, G, becomes

Go

_a—l+pf 1 N sith)
T 4y V2 v

1=2v l(h sin Vh
" 4v(1—v) V? v )

Therefore, the determinant (26) reduces to the corresponding result by Cheng (1979) in
this case. The solutions (24) and (25) will be investigated in the following two sections for
the case of free surface loads and the case of normal (transverse) surface load, respectively.
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4. EXACT PLATE EQUATIONS: NO TRANSVERSE SURFACE LOADS

For the case of the homogeneous boundary conditions (p, = q,, = ¢,, = 0), the general
solutions of the eqn (25) are the sum of the general solutions of the following three governing
differential equations:

V4q),‘ = 0, cos (Sovh/2)¢, = 0, GoQ,‘ =0

we call the first equation as the biharmonic equation and the second one as the shear equation,
according to the corresponding deformations described by them.

A. Biharmonic equation and biharmonic solution
Let &, = @, = 0, eqns (24) and (25) lead to (& = D))

Vi =0
0=D,0, ¢$=D,;0, w=D;0 (28)

and the cofactor D;;’s are given in Appendix B. It can be shown that
] =1 ,\h? 2](6,@)
(8)=-[-(5t+2) 5+ (e
-1 2
W= [1 - (“——i’f +s3,) a V’](b.
oy 8

However, since we have in this case
-1 h?
o= [1 + (5“——+lﬁ +s.§) = Vz]w
oy 8

Viw =0 (29)

9 agh? a,w
(¢) - [1 R Vz] (ayw) (30)

and, from eqn (12), the total displacements can be found to be

therefore,

zZ
W= 1+——V2]w (3D
2u

hz 2 ax
(Z) = —z{l + Ba=y [3a0+2(a5—2ag)(%) ]w}( a,;t) (32)

where a; = G/G’, ag = E/E’, G and G’ are shear modulus in the plane of isotropy and
perpendicular to it, respectively ; similarly, E, £’ are Young’s modulus in the corresponding
planes.

The eqns (29)—(32) form the biharmonic plate equations and it can be shown that @,
or @, in eqns (24) and (25) will lead to the same equations for w, 6, and ¢. The normal
stresses and shear stresses can be found to be
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E . h®
Cex = - 2 at.\'w_*'vc_r}'w'}- EXEEY

. W lag 2a—apv (=Y
T VW + oW+ 5| 5 = | T

_ E h: A 21(;"&5\/(
Oy = ~1_v26,ry{1—v+ B [2 _—'-T——

Q

]

iR}

L} bn
<
e

E LA 2 E LAY pay
0..=0, o,.= “2—(1—_—‘,‘2—)<‘4——a >6rV W, 0. = — m(z—; )(/'VV w, (33)

and the moments and shears to be

8 ; ,
M\rx = - D(:axxw‘*' Vayyw+ i:‘axﬂ‘ hzénV'w:l

8 e
M)’}’ = —D[vanw+6yyw+ a_G::éi_E“hza.‘.XV'W]

M, = —Daxy[l—H- 8;"G—"T"Oﬁf—”-hlvzj,w

V.= —-DoV*w, V,=—DéVw (34)

where D = Eh?/12(1 —v?) and v and v’ are the Poisson’s ratios in the plane of isotropy and
perpendicular to it, respectively.

For the isotropic body, z; = «; = 1, therefore, all results described above reduce to
the results in Cheng (1979). Above results also indicate clearly that the transversely isotropic
property of material is reflected only in the higher order terms (i.e. terms with (z/h)?), that
is, the terms due to the effect of transverse shearing forces on bending (Timoshenko and
Woinowsky-Krieger 1959). Hence the plate equations for the bending of the isotropic plate
and the transversely isotropic plate are identical if the higher order terms are neglected, as
in the classical plate theory. By the same arguments made in Cheng (1979), the eqns (29)-
(34) constitute the first-order theory of transversely isotropic plates, which can satisfy two
edge conditions along the boundary of the region Q.

B. Shear equation and shear solution
Let @, = @, = 0, eqns (24) and (25) lead to (¢ = ®,)

CSQ(D =0
9=DZ|(D, ¢=D22(D, W"=D23(D

the cofactor D,;’s are given in Appendix B. The equation for @ can be satisfied if

2
[Vz_<s”_’;>:,¢".-.o, n=1,3,5,....
0

Let function Q, be

h
Qn = - ";;(AnAn-Al:Azz)ayq’n

then
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2
[vz-—(sﬁ’%)]gﬁo, n=1.35,.... (352)
(1]

Therefore, the deformation corresponding to Q, is

0.="00,00 6= -7 00, w=0 (36a)
and

U, = sin ('"‘z)a 0, V.= ~sin (%)a,‘g,,, W=0. (37a)
The normal stresses and shear stresses can be found as

Oxxn = — Oy = 2G sin (nnz) nyns 0. =0, Ty = G sin (ﬁ;lz)(ayygn -axen)

mz nnz nn nnz
Gon =G — h ( )a Qns Toyn = -G’ “’,;' cos ( )a Qn (383)

The moments and shears are

M,=-M,=(-1)" ”24( i )G&ny,,, M, =(-D)" “22( h ) G0,y Qn~ 04 00)

Vie = 2(=1)""12G’0,04, Vi = =2(—1)""12G’0,0,. (39a)

Having obtained these results, one may readily understand the physical meaning of
the shear solution and its role in the theory of plates. As for the isotropic plate (Cheng
1979), in the shear deformation described by (37a), the middle plane of the plate is subject
to no deformation (U = V = W = 0), planes parallel to the middle plane slide in the same
plane and adjacent layers of the plate slide with respect to each other. Hence parallel planes
remain parallel and planes at equal distances above and below the midplane of the plate
slide with the same displacements but in opposite directions.

For each n = 1,3,..., the solution (35a) can be considered as an individual term in
the Fourier series expansion of the shear deformation. To construct a refined bending
theory for the transversely isotropic plate which can satisfy three boundary conditions at
each edge of the plate, we need only to consider the leading term 7 = 1 in eqns (35a)~(39a).
Hence, let n = 1 and replace Q, by 2GQ, eqns (352)-(39a) now read

(3 e-o

l+vn 1+vn
= T };ayQ, ¢ = - T 6,Q w=0_ (35b)
I+v , (nz I+v (nz
U= T sin (T)a,Q, V=~ '—E'- sin (—,;—)@Q, W=0 (37b)
Oxx = —0y = sin Eh'z‘)any, o, =0, Oxy = %Sin (%{)(ayyg“axe)

1 = nz I = nz
O = 5~ 3 €08 (7 0,0, 0y =~ 25 1% (*;,‘)axQ (38b)
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h 2 2
M = —A([ wo= 2(;) 6.(}'Q’ M o = (g) ((::”Q - a.\'x Q)

]

1
V.=—40, V, = — 20 (39b)
<G

Combining the biharmonic solution (29)-(34) and the shear solution (35b)~(39b), we
arrive at a second-order refined theory for the bending of the transversely isotropic plates
with the two differential governing eqns (29) and (35b). Since the total order of the governing
equations is 6, so three boundary conditions at each edge of the plates can be prescribed in
the refined plate theory. It is important to note that the three-dimensional equilibrium eqn
(2) is satisfied by any solution of the refined plate theory, and the only approximation in
the theory is introduced by the approximate specification of the boundary conditions at the
edges of the plate (i.e. the boundary conditions are specified in terms of the stress resultants
or some combination of midplane displacements and their derivatives, instead of the stress
or displacement distribution over the thickness —4/2 < z < 4/2). Therefore, in the cases
where Saint Venant’s principle holds, the refined theory should be a very accurate one.

5. APPROXIMATE PLATE EQUATIONS: TRANSVERSE SURFACE LOADS

Now let us consider the case that the plate is only subject to the transverse surface
load, i.e. 4., = g,, = 0. Since X, = X; = 0, we can set &, = @, = 0, and reduce eqns (25)
and (24) to

Dpw = A7 D 3p, (40)
D0 =D\w, D3¢ =D,w. “1)

Equation (40) is the exact governing equation for the normal displacement w at the
midplane of the plate subject to the transverse surface load. Since this equation is of infinite
order, however, it is not applicable in most cases. In the following we will try to develop
an approximate transversely isotropic plate theory which has the same structure as that of
the first-order theory given in the previous section. To this end we need to calculate the
series expansions of the differential operators in (40) and (41) up to the fourth-order of the
plate thickness 4. After tedious manipulation, the results turn out to be

—1 2
Dy = “—24—’;“Eh3v‘[1 —(a,,+a0)%\72+0(h‘)] (42)

a—1 o, .
(D1, D1 = = | 1= (== +%6 | g V2400 |(@0. ),
_ 2
Dy; = 1—(95—1:*1'g +aG>h—V2+0(h“) 43)
oy 8
where?t

_pp—a—1

o Sapu

Furthermore,

t The calculation for obtaining ,, is performed by the symbolic computation software Maple.



Theories for transversely isotropic body—I 465

~1+; r?
Dy =1+ ("-‘—EJ—’—’—B +aa) SV +0wY

and

2

h2 -1 h .
[1—(1H+aa)§V’+0(h‘)] =l+(aﬂ+ac)§v'+0(h‘).

Therefore, by dropping all the terms associated with #* or the higher orders and
considering 4 ,34* as a constant, we finally arrive at the following equations

Véw =l -—a,,thz]—g—, (44)

0 agh? 0w
(¢) = [1 pET=) Vz](@w) @)

where p = 2p, = p,—p, is the customary transverse load used in the plate theory, and

Ap = 1(————-——a_1+‘)’ﬁ _aﬂ>, D= _4—112';'_#_ ﬁAIShs'

Equations (44) and (45) form the basic equations for an approximate first-order theory
for the bending of the transversely isotropic plates. Similar equation for the mid-plane
displacement w has been obtained by Barrett and Ellis (1988) for the isotropic elastic plates.
Actually, in this case, we have D’ = D, a, = %, and a, = (8 —3v)/40(1 —v), the eqn (44)
reduces to the corresponding result in Barrett and Ellis (1988).

From the eqns (44) and (45), it can be shown that all the expressions about the spatial
(or total) displacements, stresses, and stress resultants in the previous section [(31)—(34)]
are still valid except the expression for the normal stress o,,, which becomes

etfes9]

in this case. Clearly, even if people doubt the legitimacy of the manipulation performed on
differential operators, the plate equations obtained above can be justified by comparing
their forms with the forms of the corresponding equations in other well-known plate
theories.

Since the shear solution (35b)-(39b) is still valid after the surface load condition is
satisfied approximately by the eqns (44)—(45), the combination of the eqns (44)—(45) and
shear solution therefore form a refined theory for the bending of the transversely isotropic
plates under the transverse loads, in which three boundary conditions at each edge of the
plates can be prescribed. As in Barrett and Ellis (1988), by adopting the works of Gregory
and Wan (1984, 1985) into the case of transversely isotropic body, the similar discussion
about the specification of the boundary conditions on the edges of the plate can be made.
However, this issue will not be addressed here.

6. EXAMPLES

To illustrate the applications of the theories developed in the previous sections and
compare the results with the known exact and approximate solutions, we present the
following two examples. Note that the same examples for the isotropic body have been
discussed by Cheng (1979).
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A. Torsion of a rectangular plate

Consider a rectangular plate with its four faces y = Fb and z = Fh/2 free of stress
while the two ends x = 0 and x = a twisted by two equal and opposite couples. From eqn
(37a) and the character of the shear solution described in Section 4, we note that the shear
solution is related to, and important in, the torsion problem. However, only the shear
solution will let the boundary conditions g, = 0 unsatisfied on y = Fb. In order to satisfy
this condition, a simple biharmonic solution is introduced. The final torsion solution can
be found to be

hd iV 2n+1
w=cxy, Q=Y Aycosh (’"") A )
n=0 So

with
8c(—1)"s;

hilcos (/'"b)
So

and the constant ¢ can be determined by couples applied at the ends x = 0 and x = a. The
non-zero displacement and stresses are specified by

4, =

oK - n.3 -
U= 3 4D G ,0) sink ("sy )
=0 hi}cos (QQ)) °
So

n ;'"y
(-1 cosh(s

4 2«
o, = —2Gc z— 20 Y - 7 sin (4n2)
h =0 (/.,,b)
cosh
So
(—1)"sinh </.,.y
8Gcesy & So ]
Oy = cos (4,2). (48)
n=0 2 A,,b
Afcosh| —
So

For the isotropic plate s, = 1, the solution is identical to the Saint-Venant’s exact solution
(Fung, 1965). This solution also indicates that basically the part of the torsion solution for
the transversely isotropic plates caused by the shear solution can be obtained from the
corresponding part for the isotropic plates by replacing the width b with an “equivalent
width” b/s, ; and that the part of the solution corresponding to the result of classical plate
theory is same for both isotropic and transversely isotropic plates, since the transversely
isotropic property has no effect in the classical plate theory as having been pointed out
previously.

B. The effect of holes on stress distributions in plates

Consider an infinitely large plate with a circular hole of radius ro. The boundary
conditions to be fulfilled are: x = + 0, M, = My, M, =0, V,=0; y= toc, M,, =0,
M,=0,V,=0;andr=ry, M,, =0, M,, =0, V, = 0. This problem has been investigated
by several researchers using the theory of elasticity and the improved plate theories for the
isotropic plates, Alblas (1957), Lee and Conlee (1968), Reissner (1975), and Cheng (1979),
and for the transversely isotropic plates, Wang (1985). Here we just present the major result
in Wang (1985).

Firstly the boundary conditions at infinity are transformed to the forms in the polar
coordinate :
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1
+czos 29’ M,y = —M, sm229

r= o, M,,-‘—'Mo V,'—’O.

The shear and biharmonic solutions selected are

Dw
= ¢K,(£r)sin 20 = ¢K,(p) sin 20, o =cirtdeyInr+(csr’+ e~ 2 +c5) cos 20 (49)

Q9
M,
where & = n//agh, p = ér,and K, i = 0, 1,2, is the modified Bessel function of the second

kind of order i. After applying the prescribed boundary conditions at r = rg and r = o,
we obtain

o L o 1 . __rk
STTH T vy BT T0-wy CT Taa-wy T T m
1 16 3K, , ) h)’

Cy = mH[ZKo-{- (Kl+—p;“)+(1—3V)K2-5(8dG+1E\ )("o K,

where p, = £ro, H = (14+v)K;+2K,, and K, i =0, 1,2, is the value of K, at p = p,. The
moment and the stress related with the calculation of concentration factors are the following

Cq+Cs

My _1-cos26 3(&)2+ i[B(l—v)
M, 2 2\ p rPL 2
3K;(p)] cos 26

3 2
--2—6(8&6+a5v’)() ]0528—%[K,(p)+ P ’

a59(po, 0, h/2) _ 1—cos 20 1(;:,,)2 4 3(1-v) 3 ,(h)’
P = 5 +2 ;- +;—2~ Tc4+cs—-2—5(8a6+a5v) T)es cos 20

21t
-3 [K, )+

where g, = 6M,/h*. The stress couple concentration factor k,, and the maximum-stress
concentration factor k are defined as

3K;(p)] cos 20 (50)

p

Mu(pon/2) _ | 200K, 2(1+v)K3(po)

k==, 7 - T )Kap0 +2Ke(pe)

(51

2
k, = (0@om2hD) _ | Kb, “'“f"')(Fh“)
0

[ - SH
8 n? 3K;(po)
“poH( 12)[1“("“’* o ]‘52)

respectively. For theisotropic plates, a; = = 1 and v' = v, once again the results described
above reduce to the corresponding results by Cheng (1979). Comparing the expression of
the stress couple concentration factor here with that in Cheng (1979), we find that in the
calculation of k,, for a transversely isotropic plate of thick 4 is exactly equivalent to that
for an isotropic plate of thickness \ /agh. For very thin plates, i « ry, po — o0, we find that
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5+3v

ku = 3+v

which is the result obtained by means of classical plate theory. Since a; = G/G’ and k,, is
a decreasing function of p,, therefore, with respect to an isotropic plate, when G’ > G, i.e.
when the transverse shear stiffness is greater than the shear stiffness in (x, y) plane, then
the stress couple concentration is intensified, while when G’ < G, the stress couple con-
centration is reduced. This observation agrees with the intuitive physical consideration. For
the maximum-stress concentration factor, comparing with the result for the isotropic plates,
we find the following additional term purely due to the non-isotropic material property
(vanishing for the isotropic plates)

h 2
00 3(ag - 1= a1 (2.

However, since the maximum-stress concentration factor is dependable only for the thin
plates (2 < ro), this term is of the neglectable magnitude (Wang, 1985). Hence, the remarks
just made for the stress couple concentration factor are valid for the maximum-stress
concentration factor, too. For a further and detailed discussion of the problem readers are
referred to Wang (1985).

7. CONCLUSION

In the above sections, a refined two-dimensional theory for the transversely isotropic
plates has been deduced systematically and directly from the three-dimensional theory
without any ad hoc assumptions. It is found that, in the refined plate theory, the effect of
transversely isotropic property is reflected only in the higher order terms of the plate
thickness in the biharmonic solution and in the shear solution. Hence, for the very thin
plates, the transversely isotropic bodies and isotropic bodies exhibit the same bending
behavior. For homogeneous plates, the refined plate theory is exact in the sense that a
solution of the refined plate theory satisfies all the equations in the three-dimensional theory.
For the plates under a transverse load, this fact is no longer held. However, the refined
plate theory for the loaded plates can still be justified by comparing its form with that of
other well-known modified plate theories for isotropic plates. Furthermore, the two exam-
ples studied also indicate that in some cases a solution of the refined theory for a transversely
isotropic plate can be obtained approximately from the corresponding solution of the
refined theory for an isotropic plate by replacing certain length terms with the “equivalent”
terms.
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APPENDIX A: MATERIAL CONSTANTS

1. Coefficients used in Hu's general solution

2= Ay - A - Ajs “zﬂ
A+Ad° An+Ad’ A+ As’ A1
A B+ . /B*—44,,4,,42
5= Z‘:f, st = 2A33A:.‘ » “, B= A||A33—2A13A44—A%3
a’+py—1
st+s3 = sis3 =§, ap=p—7y.

2. A;; and the customary engineering material constants
Let E, G, and v be Young’s modulus, shear modulus, and Poisson's ratio in the plane of isotropy, respectively,
and let E’, G, and v’ be the transverse Young’s modulus, shear modulus, and Poisson’s ratio, respectively. Then

E(1—ag) El-) ,
An T (1 +v(1-v=2a,v%)’ Ass—m‘. Au=G
E(v+a v'? vE
A, (v+az) A, =G.

=T o—2avy’ =05 2’

For isotropic materials :

a=1=2v, B=y9=2(1-v), pu=({1-=v)/v.

APPENDIX B: DIFFERENTIAL OPERATORS

1. Basic differential operators

_sin(s,V2) _ _z=SN, _1-c¢s
SNi = S‘V . CSI = COS (S,VZ), SS, = s,sz s CC1 = slzv: y 1= Os 112
. 5388, ~s¥SS, . s¥ice, -s¥icc,
= P , Q.= e , i=0,1.2,3
whens,—» 1,5, =1, 5,-1:
_ sin Vz 2cosVz sin Vz
\'4 1 B 1—cosVz zsinVz
i § —_— i . — -
QL = (i-1) v 3 v » Q. —~ (-1 v? + 37V

3,SN, = CS,, 9,CS,= —s?V2SN, ,8S,=CC, 9,CC,=SN, i=0,12
¥ —st
v, i=0,1,2,3

si—s2

S

0.0, =Q, 00, =z

2 2, %1 Vo _2% o2
8,Lg = s3CCo—Q% + ;Q“, d.L, = -;—(or.Q,,—ﬁQ,,)— - v
7
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2

V 2
G =0l Ol= - Yy—lzrﬂ,’,—(z’+ﬂ7)ﬂi+zﬂﬂél.

2. G, and cofactors D;;
Giy = (1= —)Q +p(1 = 7p— ) +ayufds,,  Goy = 2B, + (1 +pf— Q.+ 1,9
Gis = B(1 = pp)(QEQL — Q)+ (1 — pf — ) QAU — Q%) - ap(QLQL + QUQ) + 2BuQQY,
Dy, = —C8yA338,, Dy3 = —CSpAs;8,, Dy = CSy{CSp+4,,V?)
Dy = CSoAl,!“(Al|A33‘A13Azz)a,m Dy = (AIIAJJ—'AUAZZ)E,W- Dy = —CSOAHex
D;, = (AnAsJ"AlJAzz)ax_w D;z = CSOAIJ—(AIIAJS—AIJAZZ)EM' Dy; = “CSOAH&,V'



